
临床研究SAS高级编程 1

临床研究SAS高级编程

－－ SAS Data Step

临床研究SAS高级编程 2

Contents

Overview

How SAS processes programs

Compilation phase

Execution phase

Debugging a DATA step

Testing your programs

临床研究SAS高级编程 3

Overview

Introduction

This section teaches you what
happens "behind the scenes" when
the DATA step reads raw data.
You'll examine the program data
vector, which is a logical framework
that SAS uses when creating SAS
data sets.

Understanding how the program
operates can help you to anticipate
how variables will be created and
processed, to plan your
modifications, and to interpret and
debug program errors. It also gives
you useful strategies for preventing
and correcting common DATA step
errors.

临床研究SAS高级编程 4

How SAS Processes Programs (1)

When you submit a DATA step, SAS processes the DATA step and
then creates a new SAS data set. Let's see exactly how that happens.

A SAS DATA step is processed in two phases:

During the compilation phase, each statement is scanned for syntax
errors. Most syntax errors prevent further processing of the DATA step.
When the compilation phase is complete, the descriptor portion of the new
data set is created.

If the DATA step compiles successfully, then the execution phase begins.
During the execution phase, the DATA step reads and processes the input
data. The DATA step executes once for each record in the input file, unless
otherwise directed.

临床研究SAS高级编程 5

How SAS Processes Programs (2)

The diagram below shows the flow of DATA step

processing for reading raw data. We'll examine both the

compilation phase and the execution phase in this section.

临床研究SAS高级编程 6

Compilation Phase (1)

Input buffer

At the beginning of the compilation phase, the input buffer (an

area of memory) is created to hold a record from the external file.

The input buffer is created only when raw data is read, not when a

SAS data set is read. The term input buffer refers to a logical

concept; it is not a physical storage area.

临床研究SAS高级编程 7

Compilation Phase (2)

Program data vector

After the input buffer is created, the program data vector is

created. The program data vector is the area of memory where SAS

builds a data set, one observation at a time. Like the term input

buffer, the term program data vector refers to a logical concept.

The program data vector contains two automatic variables that

can be used for processing but which are not written to the data set

as part of an observation.

N counts the number of times that the DATA step begins to execute.

ERROR signals the occurrence of an error that is caused by the

data during execution. The default value is 0, which means there is no

error. When one or more errors occur, the value is set to 1.

临床研究SAS高级编程 8

Compilation Phase (3)

Syntax checking

During the compilation phase, SAS also scans each statement in

the DATA step, looking for syntax errors. Syntax errors include

missing or misspelled keywords

invalid variable names

missing or invalid punctuation

invalid options.

临床研究SAS高级编程 9

Compilation Phase (4)

Data set variables (1)

As the INPUT statement is compiled, a slot is added to the

program data vector for each variable in the new data set. Generally,

variable attributes such as length and type are determined the first

time a variable is encountered.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

临床研究SAS高级编程 10

Compilation Phase (5)

Data set variables (2)

Any variables that are created with an assignment statement in the DATA

step are also added to the program data vector. For example, the assignment

statement below creates the variable Total. As the statement is compiled, the

variable is added to the program data vector. The attributes of the variable are

determined by the expression in the statement. Because the expression

produces a numeric value, Total is defined as a numeric variable and is

assigned the default length of 8.
data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

临床研究SAS高级编程 11

Compilation Phase (6)

Descriptor portion of the SAS data set (1)
At the bottom of the DATA step (in this example, when the RUN

statement is encountered), the compilation phase is complete, and
the descriptor portion of the new SAS data set is created. The
descriptor portion of the data set includes

the name of the data set

the number of observations and variables

the names and attributes of the variables.

At this point, the data set contains the five variables that are
defined in the input data set and in the assignment statement.
Remember, _N_ and _ERROR_ are not written to the data set.
There are no observations because the DATA step has not yet
executed. During execution, each raw data record is processed and
is then written to the data set as an observation.

临床研究SAS高级编程 12

Compilation Phase (7)

Descriptor portion of the SAS data set (2)

临床研究SAS高级编程 13

Compilation Phase (8)

Summary of the compilation phase
Let's review the compilation phase.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

During the compilation phase, the input buffer is created to hold a record from the
external file.

The program data vector is created to hold the current observation.

The descriptor portion of the SAS data set

 is created.

临床研究SAS高级编程 14

Quiz

Which of the following is not created during the compilation phase?

a. the data set descriptor

b. the first observation

c. the program data vector

d. the _N_ and _ERROR_ automatic variables

Correct answer: b

At the beginning of the compilation phase, the program data vector is created.
The program data vector includes the two automatic variables _N_ and
ERROR. The descriptor portion of the new SAS data set is created at the
end of the compilation phase. The descriptor portion includes the name of the
data set, the number of observations and variables, and the names and
attributes of the variables. Observations are not written until the execution
phase.

临床研究SAS高级编程 15

Quiz

During the compilation phase, SAS scans each

statement in the DATA step, looking for syntax errors.

Which of the following is not considered a syntax error?

a. incorrect values and formats

b. invalid options or variable names

c. missing or invalid punctuation

d. missing or misspelled keywords

Correct answer: a

Syntax checking can detect many common errors, but it cannot verify

the values of variables or the correctness of formats.

临床研究SAS高级编程 16

Execution Phase (1)

Overview (1)

After the DATA step is compiled,

it is ready for execution. During the

execution phase, the data portion

of the data set is created. The data

portion contains the data values.

During execution, each record in

the input raw data file is read,

stored in the program data vector,

and then written to the new data

set as an observation. The DATA

step executes once for each record

in the input file, unless otherwise

directed by additional statements.

临床研究SAS高级编程 17

Execution Phase (2)

Overview (2)

Example: The following DATA step reads values from the file

Invent and executes nine times because there are nine records in

the file.
data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

临床研究SAS高级编程 18

Execution Phase (3)

Initializing variables

At the beginning of the execution phase, the value of _N_ is 1. Because

there are no data errors, the value of _ERROR_ is 0.
data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

The remaining variables are initialized to missing. Missing numeric values

are represented by periods, and missing character values are represented

by blanks.

临床研究SAS高级编程 19

Execution Phase (4)

Input data

Next, the INFILE statement identifies the location of the raw data.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

临床研究SAS高级编程 20

Execution Phase (5)

Input pointer (1)

When an INPUT statement begins to read data values from a record that

is held in the input buffer, it uses an input pointer to keep track of its position.

The input pointer starts at column 1 of the first record, unless otherwise

directed. As the INPUT statement executes, the raw data in columns 1-13 is

read and is assigned to Item in the program data vector.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

临床研究SAS高级编程 21

Execution Phase (6)

Input pointer (2)

Notice that the input pointer now rests on column 14. With column

input, the pointer moves as far as the INPUT statement instructs it,

and it stops in the column immediately following the last one read.

临床研究SAS高级编程 22

Execution Phase (7)

Input pointer (3)

Next, the data in columns 15–19 is read and is assigned to IDnum

in the program data vector, as shown below. Likewise, the INPUT

statement reads the values for InStock from columns 21–22, and it

reads the values for BackOrd from columns 24–25. At the end of the

INPUT statement processing, the input pointer is in column 26.

临床研究SAS高级编程 23

Execution Phase (8)

Input pointer (4)

Next, the assignment statement executes. The values for InStock

and BackOrd are added to produce the values for Total.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

临床研究SAS高级编程 24

Execution Phase (9)

End of the DATA step (1)

At the end of the DATA step, three actions occur. First, the values

in the program data vector are written to the output data set as the

first observation.
data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Item IDnum InStock BackOrd Total

Bird Feeder LG088 3 20 23

SAS Data Set Perm.Update

临床研究SAS高级编程 25

Execution Phase (10)

End of the DATA step (2)

Next, the value of _N_ is set to 2 and control returns to the top of the
DATA step. Finally, the variable values in the program data vector are re-set
to missing. Notice that the automatic variable _ERROR_ retains its value.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

Finally, the variable values in the program data vector are re-set to
missing. Notice that the automatic variables _N_ and _ERROR_ retain their
values.

临床研究SAS高级编程 26

Execution Phase (11)

End of the DATA step (3)

Note: When reading variables from raw data, SAS sets the value of each
variable in the DATA step to missing at the beginning of each cycle of
execution, with these exceptions:

variables that are named in a RETAIN statement

variables that are created in a sum statement

data elements in a _TEMPORARY_ array

any variables that are created with options in the FILE or INFILE statements

automatic variables.

In contrast, when reading variables from a SAS data set, SAS sets the
values to missing only before the first cycle of execution of the DATA step.
Thereafter, the variables retain their values until new values become
available—for example, through an assignment statement or through the
next execution of a SET or MERGE statement. Variables that are created
with options in the SET or MERGE statements also retain their values from
one cycle of execution to the next.

临床研究SAS高级编程 27

Execution Phase (12)

Iterations of the DATA step (1)

You can see that the DATA step works like a loop, repetitively executing

statements to read data values and create observations one by one. Each

loop (or cycle of execution) is called an iteration. At the beginning of the

second iteration, the value of _N_ is set to 2, and _ERROR_ is still 0. Notice

that the input pointer rests in column 1 of the second record.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

临床研究SAS高级编程 28

Execution Phase (13)

Iterations of the DATA step (2)

As the INPUT statement executes for the second time, the values

from the second record are held in the input buffer and then read into

the program data vector.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

临床研究SAS高级编程 29

Execution Phase (14)

Iterations of the DATA step (3)

Next, the value for Total is calculated based on the current values

for InStock and BackOrd. The RUN statement indicates the end of

the DATA step.

data perm.update;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

临床研究SAS高级编程 30

Execution Phase (15)

Iterations of the DATA step (4)

At the bottom of the DATA step, the values in the program data

vector are written to the data set as the second observation.

Item IDnum InStock BackOrd Total

Bird Feeder LG088 3 20 23

6 Glass Mugs SB082 6 12 18

SAS Data Set Perm.Update

临床研究SAS高级编程 31

Execution Phase (16)

Iterations of the DATA step (5)

Next, control returns to the top of the DATA step, and the values

for Item, IDnum, InStock, BackOrd, and Total are re-set to missing.

临床研究SAS高级编程 32

Execution Phase (17)

End-of-file marker

The execution phase continues in this manner until the end-of-file marker
is reached in the raw data file. When there are no more records in the raw
data file to be read, the data portion of the new data set is complete.

Remember, the order in which variables are defined in the DATA step
determines the order in which the variables are stored in the data set. The
DATA step below, which reverses the order of Item and IDnum, produces a
different data set from the same raw data.
data perm.update;

 infile invent;

 input IDnum $ 15-19 Item $ 1-13

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

IDnum Item InStock BackOrd Total

LG088 Bird Feeder 3 20 23

SB082 6 Glass Mugs 6 12 18

SAS Data Set Perm.Update

临床研究SAS高级编程 33

Execution Phase (18)

Summary of the execution phase (1)

You've seen how the DATA step iteratively reads records in the raw data

file. Now take a minute to review execution-phase processing.

During the execution phase

variables in the program data vector are initialized to missing before each

execution of the DATA step

each statement is executed sequentially

the INPUT statement reads the next record from the external file identified by

the INFILE statement, and it writes the values into the program data vector

other statements can then further modify the current observation

the values in the program data vector are written to the SAS data set at the end

of the DATA step

program flow is returned to the top of the DATA step

the DATA step is executed until the end-of-file marker is reached in the

external file.

临床研究SAS高级编程 34

Execution Phase (19)

Summary of the execution phase (2)

临床研究SAS高级编程 35

Execution Phase (20)

End of the execution phase

At the end of the execution phase, the SAS log confirms that the

raw data file was read, and it displays the number of observations

and variables in the data set.

临床研究SAS高级编程 36

Execution Phase (21)

Unless otherwise directed, the DATA step executes

a. once for each compilation phase.

b. once for each DATA step statement.

c. once for each record in the input file.

d. once for each variable in the input file.

Correct answer: c

The DATA step executes once for each record in the input file, unless

otherwise directed.

临床研究SAS高级编程 37

Execution Phase (22)

 Which of the following actions occurs at the end of the DATA step?

a. The automatic variables _N_ and _ERROR_ are incremented by one.

b. The DATA step stops execution.

c. The descriptor portion of the data set is written.

d. The values of variables created in programming statements are re-set

to missing in the program data vector.

Correct answer: d

By default, at the end of the DATA step, the values in the program data vector

are written to the data set as an observation, the value of the automatic

variable _N_ is incremented by one, control returns to the top of the DATA step,

and the values of variables created in programming statements are set to

missing. The automatic variable _ERROR_ retains its value.

临床研究SAS高级编程 38

Debugging a DATA Step (1)

Diagnosing errors in the compilation phase (1)

Now that you know how a DATA step is processed, you can use

that knowledge to correct errors. Many errors are detected during the

compilation phase, including

misspelled keywords and data set names

missing semicolons

unbalanced quotation marks

invalid options.

临床研究SAS高级编程 39

Debugging a DATA Step (2)

Diagnosing errors in the compilation phase (2)

During the compilation phase, SAS can interpret some syntax

errors (such as the keyword DATA misspelled as DAAT). If it cannot

interpret the error, SAS

 prints the word ERROR followed by an error message in the log

 compiles but does not execute the step where the error occurred, and

prints the following message to warn you:

NOTE: The SAS System stopped processing this step because of errors.

Some errors are explained fully by the message that SAS prints;

other error messages are not as easy to interpret. For example,

because SAS statements are in free format, when you fail to end a

SAS statement with a semicolon, SAS does not always detect the

error at the point where it occurs.

临床研究SAS高级编程 40

Debugging a DATA Step (3)

Diagnosing errors in the execution phase (1)

As you have seen, errors can occur in the compilation phase,

resulting in a DATA step that is compiled but not executed. Errors

can also occur during the execution phase. When SAS detects an

error in the execution phase, the following can occur, depending on

the type of error:

A note, warning, or error message is displayed in the log.

The values that are stored in the program data vector are displayed in

the log.

The processing of the step either continues or stops.

临床研究SAS高级编程 41

Debugging a DATA Step (4)

Diagnosing errors in the execution phase (2)

Example: Suppose you misspelled the fileref in the INFILE

statement below. This is not a syntax error, because SAS does not

validate the file that you reference until the execution phase. During

the compilation phase, the fileref Invnt is assumed to reference

some external raw data file.
data perm.update;

 infile invnt;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

临床研究SAS高级编程 42

Debugging a DATA Step (5)

Diagnosing errors in the execution phase (3)

This error is not detected until the execution phase begins. Because there
is no external file that is referenced by the fileref Invnt, the DATA step stops
processing.

Because Invent is misspelled, the statement in the DATA step that
identifies the raw data is incorrect. Note, however, that the correct number of
variables was defined in the descriptor portion of the data set.

临床研究SAS高级编程 43

Debugging a DATA Step (6)

Diagnosing errors in the execution phase (4)

Incorrectly identifying a variable's type is another common

execution-time error. As you know, the values for IDnum are

character values. Suppose you forget to place the dollar sign ($) after

the variable's name in your INPUT statement. This is not a compile-

time error, because SAS cannot verify IDnum's type until the data

values for IDnum are read.
data perm.update;

 infile invnt;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

临床研究SAS高级编程 44

Debugging a DATA Step (7)

Diagnosing errors in the execution phase (5)

In this case, the DATA step completes the execution phase, and the

observations are written to the data set. However, several notes appear in the

log.

Each note identifies the location of the invalid data for each observation. In

this example, the invalid data is located in columns 15-19 for all observations.

临床研究SAS高级编程 45

Debugging a DATA Step (8)

Diagnosing errors in the execution phase (6)

The second line in each note (excluding the RULE line) displays

the raw data record. Notice that the second field displays the values

for IDnum, which are obviously character values.

The third and fourth lines display the values that are stored in the

program data vector. Here, the values for IDnum are missing,

although the other values have been correctly assigned to their

respective variables. Notice that _ERROR_ has a value of 1,

indicating that an error has occurred.

临床研究SAS高级编程 46

Debugging a DATA Step (9)

Diagnosing errors in the execution phase (7)

When you read raw data with the DATA step, it's important to check the SAS log to
verify that your data was read correctly. Here is a typical message:

When no observations are written to the data set, you should check to see whether
your DATA step was completely executed. Most likely, a syntax error or another error
is being detected at the beginning of the execution phase.

An invalid data message indicates that the program executed, but the data is not
acceptable. Typically, the message indicates that a variable's type has been
incorrectly identified in the INPUT statement, or that the raw data file contains some
invalid data value(s).

临床研究SAS高级编程 47

Testing Your Programs (1)

Writing a NULL data set

After you write or edit a DATA step, you can compile and execute your
program without creating observations. This enables you to detect the most
common errors and saves you development time. A simple way to test a
DATA step is to specify the keyword _NULL_ as the data set name in the
DATA statement.

data _null_;

 infile invent;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

When you submit the DATA step, no data set is created, but any
compilation or execution errors are written to the log. After correcting any
errors, you can replace _NULL_ with the name of the data set you want to
create.

临床研究SAS高级编程 48

Testing Your Programs (2)

Limiting observations
Remember that you can use the OBS= option in the INFILE

statement to limit the number of observations that are read or created
during the execution of the DATA step.

data perm.update;

 infile invent obs=10;

 input Item $ 1-13 IDnum $ 15-19

 InStock 21-22 BackOrd 24-25;

 Total=instock+backord;

run;

When processed, this DATA step creates the Perm.Update data
set with variables but with only ten observations.

临床研究SAS高级编程 49

Testing Your Programs (3)

PUT statement (1)

When the source of program errors is not apparent, you can use

the PUT statement to examine variable values and to print your own

message in the log. For diagnostic purposes, you can use IF-

THEN/ELSE statements to conditionally check for values.

data work.test;

 infile loan;

 input Code $ 1 Amount 3-10 Rate 12-16

 Account $ 18-25 Months 27-28;

 if code='1' then type='variable';

 else if code='2' then type='fixed';

 else put 'MY NOTE: invalid value: ' code=;

run;

临床研究SAS高级编程 50

Testing Your Programs (4)

PUT statement (2)
In this example, if CODE does not have the expected values of 1 or 2, the

PUT statement writes a message to the log:

General form, simple PUT statement:

PUT specification(s);

 where specification specifies what is written, how it is written, and where it
is written. This can include

a character string

one or more data set variables

the automatic variables _N_ and _ERROR_

the automatic variable _ALL_

and much more. The following pages show examples of PUT
specifications.

临床研究SAS高级编程 51

Testing Your Programs (5)

Character strings

You can use a PUT statement to specify a character string to

identify your message in the log. The character string must be

enclosed in quotation marks.

put 'MY NOTE: The condition was met.';

临床研究SAS高级编程 52

Testing Your Programs (6)

Data set variables
You can use a PUT statement to specify one or more data set

variables to be examined for that iteration of the DATA step:
put 'MY NOTE: invalid value: ' code type;

Note that when you specify a variable in the PUT statement, only
its value is written to the log. To write both the variable name and its
value in the log, add an equal sign (=) to the variable name.

put 'MY NOTE: invalid value: ' code= type=;

临床研究SAS高级编程 53

Testing Your Programs (7)

Automatic variables
You can use a PUT statement to display the values of the

automatic variables _N_ and _ERROR_. In some cases, knowing
the value of _N_ can help you locate an observation in the data set:
put 'MY NOTE: invalid value: '

 code= _n_= _error_=;

You can also use a PUT statement to write all variable names and
variable values, including automatic variables, to the log. Use the
ALL specification:
put 'MY NOTE: invalid value:

 ' _all_ ;

临床研究SAS高级编程 54

Testing Your Programs (8)

Conditional processing

You can use a PUT statement with conditional processing (that is,

with IF-THEN/ELSE statements) to flag program errors or data that is

out of range. In the example below, the PUT statement is used to

flag any missing or zero values for the variable Rate.
data finance.newcalc;

 infile newloans;

 input LoanID $ 1-4 Rate 5-8 Amount 9-19;

 if rate>0 then Interest=amount*(rate/12);

 else put 'DATA ERROR ' rate= _n_=;

run;

The PUT statement can accomplish a wide variety of tasks. This

lesson shows a few ways to use the PUT statement to help you

debug a program or examine variable values.

