. I PRBF L SAS B B4 e
—— SAS Data Step

B\ it Shmemnas | ISR SEAST BT
&

' Contents

. Overview

. How SAS processes programs
. Compilation phase

. Execution phase

. Debugging a DATA step

. Testing your programs

B 13) SR SRR AL 2 PR TS ISASTE R

‘ Overview

' Introduction

» This section teaches you what
happens "behind the scenes" when
the DATA step reads raw data.
You'll examine the program data
vector, which is a logical framework
that SAS uses when creating SAS
data sets.

» Understanding how the program
operates can help you to anticipate
how variables will be created and
processed, to plan your
modifications, and to interpret and
debug program errors. It also gives
you useful strategies for preventing
and correcting common DATA step
errors.

B\ it Shmemnas
&

Eaw Data File Invent

Bird Feeder

6 Glass Mugs
Flass Tray
Padded Hangrs
Jewelry Box
Bed Apron
Crystal Vase
Ficnic Basket
Bras=s Clock

Lzd85 3 zZ0
3B082 6 12
BEQO45 12
MMz56 15 zZ0O
AT495 Z3
AQO%z 9 12
AQe7z2 27
L3930 21
AWNS10 2 10

data perm.update;

infile imwvent:

rumn;

s input Item § 1-13 IDnuwm % 15-19

InZtock 21-22 BackOrd 24-25;
Total=instock+backord:

FProgram Data Yectar

HN|ERROR_ ftem IDnum | InStock | BackOrd Total
_ |2] &6 Glass Mugs | SBEO0S2 =) 12 13
=485 Data Set Perm.Update
Item IDNum | InStock |BackOrd | Total
Bird Feeder LE088 3 20 23
L = |G Glass Mugs sBO32 a] 12 15 .
GRS SASE R 4R iz

‘ How SAS Processes Programs (1)

& When you submit a DATA step, SAS processes the DATA step and
then creates a new SAS data set. Let's see exactly how that happens.
A SAS DATA step is processed in two phases:

New SAS Data Set

Compilation ___J Descriptor Portion
Phase

Execution Diata Partion
Phase

» During the compilation phase, each statement is scanned for syntax
errors. Most syntax errors prevent further processing of the DATA step.
When the compilation phase is complete, the descriptor portion of the new
data set is created.

» |f the DATA step compiles successfully, then the execution phase begins.
During the execution phase, the DATA step reads and processes the input
data. The DATA step executes once for each record in the input file, unless
otherwise directed.

B @ I SRR AR ‘ PR TS SAS A SRR
\&

‘ How SAS Processes Programs (2)

0 The diagram below shows the flow of DATA step
processing for reading raw data. We'll examine both the
compilation phase and the execution phase In this section.

Carn pile
Progranm

Cornpilation Phase

Y Execution Phase

Initialize Variables
to Missing
L

TS | pout
Execute INPLT Step
Statement
Execute Other

Statermnents Mo

Dutput to
SAS Data Set

-

B _B/* G SHEEER A 5 IS BRATSESAS A RATE
\&

‘ Compilation Phase (1)

0 Input buffer

» At the beginning of the compilation phase, the input buffer (an
area of memory) is created to hold a record from the external file.
The input buffer is created only when raw data is read, not when a
SAS data set is read. The term input buffer refers to a logical
concept; it is not a physical storage area.

Input Buffer
1 2 34 586 78 9101112131415 16171819 201

B @ I SRR AR : ISR A IR
\&

‘ Compilation Phase (2)

0 Program data vector

» After the input buffer is created, the program data vector is
created. The program data vector is the area of memory where SAS
builds a data set, one observation at a time. Like the term input
buffer, the term program data vector refers to a logical concepit.

» The program data vector contains two automatic variables that
can be used for processing but which are not written to the data set
as part of an observation.

[N_ counts the number of times that the DATA step begins to execute.

[ERROR_ signals the occurrence of an error that is caused by the
data during execution. The default value is 0, which means there is no
error. When one or more errors occur, the value is set to 1.

Frogram Data Wector

M|ERROR. I

B @ I SRR AR 7 PR TS SAS A SRR
\&

' Compilation Phase (3)

9 Syntax checking

» During the compilation phase, SAS also scans each statement in
the DATA step, looking for syntax errors. Syntax errors include

[missing or misspelled keywords
[invalid variable names

[missing or invalid punctuation

[invalid options.

ccccccccccccccccc

) AT SR A 8 RS SAS S

‘ Compilation Phase (4)

9 Data set variables (1)

» As the INPUT statement is compiled, a slot is added to the
program data vector for each variable in the new data set. Generally,

variable attributes such as length and type are determined the first
time a variable is encountered.

data perm.update;
infile invent;
input Item $ 1-13 IDnum $ 15-19
InStock 21-22 BackOrd 24-25;
Total=instock+backord;

run,
Program Data Yectar
N|ERROR_ tem IDnum | InStock | BackOrd
B PR I SaETER A2 9 PR BSESAS B
&

‘ Compilation Phase (5)

0 Data set variables (2)

» Any variables that are created with an assignment statement in the DATA
step are also added to the program data vector. For example, the assignment
statement below creates the variable Total. As the statement is compiled, the
variable is added to the program data vector. The attributes of the variable are
determined by the expression in the statement. Because the expression
produces a numeric value, Total is defined as a numeric variable and is
assigned the default length of 8.
data perm.update;
infile invent;
input Item $ 1-13 IDnum $ 15-19
InStock 21-22 BackOrd 24-25;
Total=instock+backord;

run,
Frogram Data Vector

HN|ERROR_ ltem IDnum | InStock | BackOrd Total

B @ IEFE SRR AR 10 ISR A IR
\&

‘ Compilation Phase (6)

0 Descriptor portion of the SAS data set (1)

» At the bottom of the DATA step (in this example, when the RUN
statement is encountered), the compilation phase is complete, and
the descriptor portion of the new SAS data set is created. The
descriptor portion of the data set includes

[the name of the data set
[the number of observations and variables
[the names and attributes of the variables.

» At this point, the data set contains the five variables that are
defined in the input data set and in the assignment statement.
Remember, N _ and ERROR_ are not written to the data set.
There are no observations because the DATA step has not yet
executed. During execution, each raw data record is processed and
IS then written to the data set as an observation.

B 13} I SKEEERAS 1 PR BSESAS B
\&

‘ Compilation Phase (7)

Data Set Descriptor

{ Descriptor portion of the SAS data set (2)

File Name:
Release Created:
Host Created:

Data 5Set Name: PERM.UPDATE Cheervations:

Member Type: DATE Variables:

Engine: W9 Indexes:

Created: 14:38 Thursday, June Z0, 2002 Chservation Length:
Last Modified: 14:38 Thursday, June 20, 2002 Deleted Cbservations:
Frotection: Compressed:

Data Set Type: Sorted:

Label:

Data Zet Page Size: 4096
Number of Data Set Pages: 1
First Data Page: 1
Max Obs per Page: 84
Chs in First Data Page: 9

Number of Data &8st Repairs: 0

COAWINMNTAWMY SAS Files\VB\update.sasTbdat
O_0000M0
WIN NT

By dbseemssit SHEtreas

_/‘\ Beijing Biometric Associat

on

Variable Type Len Pos

4 Backord Num 8 a

Z IDnum Char 5 37

3 Indtock Num 8]

1 Iten Char 13 24

5 Total Num 8 16
12

R ST SAS S R 4mTE

‘ Compilation Phase (8)

0 Summary of the compilation phase

» Let's review the compilation phase.
data perm.update;
infile invent;
input Item $ 1-13 IDnum $ 15-19

InStock 21-22 BackOrd 24-25;

Total=instock+backord;
run;

» During the compilation phase, the input buffer is created to hold a record from the

external file.
Input Buffer

12 34 86 7 8 8101112131415 1617 15819 20 21

{

» The program data vector is created to hold the current observation.

FProgram Data Vector
M| ERROR_ ltem IDhum | InStock | BackOrd Total

» The descriptor portion of the SAS data set

IS created.
B\ et ShEemras &

&

Data Set Descriptor (Partial)

Data Set MName:
Member Type:
Engine:

Created:
Chservations:
Variables:

Indexes:
Chservation Length:

PERM.UPDATE

DATA

]

11:25 Friday, June 21, 2002
0

il

1]

30

R ST SAS S R 4mTE

' Quiz

9 Which of the following is not created during the compilation phase?

» a. the data set descriptor

» p. the first observation

» C. the program data vector

» d. the N_and ERROR_ automatic variables

» Correct answer: b

[At the beginning of the compilation phase, the program data vector is created.
The program data vector includes the two automatic variables N _and
ERROR. The descriptor portion of the new SAS data set is created at the
end of the compilation phase. The descriptor portion includes the name of the
data set, the number of observations and variables, and the names and
attributes of the variables. Observations are not written until the execution
phase.

B\ ecmsit SyEmmnas 14 PR TS ISASTE R
\&

' Quiz

9 During the compilation phase, SAS scans each
statement in the DATA step, looking for syntax errors.
Which of the following is not considered a syntax error?

» a. Incorrect values and formats

» . invalid options or variable names
» C. Mmissing or invalid punctuation

» d. missing or misspelled keywords

» Correct answer: a

[Syntax checking can detect many common errors, but it cannot verify
the values of variables or the correctness of formats.

-

Bp)\ dSemsiit SuiR e s 15 RS SAS S

-/‘\ ccccccccccccccccc

‘ Execution Phase (1)

New SAS Data Set

‘ Overview (1) CD;”E;':S':'”_.. Descriptar Portion
» After the DATA step is compiled, ocution |
it is ready for execution. During the Phase —> Hata Forion
execution phase, the data portion

of the data set is created. The data
portion contains the data values.

Zarm pile
Frogream Compilation Phase
» During execution, each record in —— Execution Phase
. .) | Initialize Variables
the input raw data file is read, to Missing
stored in the_ program data vector, ' ves ert
and then written to the new data _Statement
set as an observation. The DATA Statements No
step executes once for each record —
in the input file, unless otherwise T | 5AS Data Set
directed by additional statements.
B\ ecmsit SyEmmnas 16 PR TS ISASTE R

&

‘ Execution Phase (2)

0 Overview (2)

» Example: The following DATA step reads values from the file
Invent and executes nine times because there are nine records in

the file.
data perm.update;
infile invent;
input Item $ 1-13 IDnum $ 15-19
InStock 21-22 BackOrd 24-25;
Total=instock+backord;

run;,
B\ it Shmemnas "

&

Faw Data File [nvent

Bird Feeder

6 zlass Mugs
zlass Tray
Padded Hangrs
Jewelry Box
Eed Apron
Crystal Vase
Picnic Basket

Brass Clock

LGOES
SBE0S2Z
BOO49
MNZ5 6
AJT498
RQ072Z
ROBTZ
L5930
AN910

R ST SAS S R 4mTE

‘ Execution Phase (3)

g Initializing variables

» At the beginning of the execution phase, the value of N _is 1. Because
there are no data errors, the value of ERROR_is 0.
data perm.update;
infile invent;
input Item $ 1-13 IDnum $ 15-19
InStock 21-22 BackOrd 24-25;
Total=instock+backord;

run,

Frogram Data Yector

HN|ERROR_ ltem IDhum | InStock | BackOrd Total
1

]] - -

, Initialized ta Missing I

The remaining variables are initialized to missing. Missing numeric values
are represented by periods, and missing character values are represented
by blanks.

B bR SRR SRR S 18 IERFAZTSASER B RTE
BA e

‘ Execution Phase (4)

0 Input data

» Next, the INFILE statement identifies the location of the raw data.

data perm.update;

infile invent;

input Item $ 1-13 IDnum $ 15-19
InStock 21-22 BackOrd 24-25;
Total=instock+backord;

run,

Frogram Data Wector

Raw Data File [nvent

Bird Feeder LE088 3 20
& Zlass Mugs SBOHZ 6 12
zlass Tray Bo049 12 &
Padded Hangrs MNZ5a 15 20
Jeweslry Box 2AT408 23 0
Eed Apron RoO072 9 12
Crystal Vase AQETZ 27 (0
Picnic Basket L5930 21 0O

Brass Clock ANG10 2 10

N|ERROR_ tem

IDnum

InStock

BackOrd

Total

1]

By)\ st Symmmnas

B/
<4

19

R ST SAS S R 4mTE

‘ Execution Phase (5)

g Input pointer (1)
» \WWhen an INPUT statement begins to read data values from a record that
IS held in the input buffer, it uses an input pointer to keep track of its position.

» The input pointer starts at column 1 of the first record, unless otherwise
directed. As the INPUT statement executes, the raw data in columns 1-13 is
read and is assigned to Item in the program data vector.

Raw Data File Invent

data perm.update; Bird Feeder 1LGOS8 3 20

6 =lazs Mugs SBOBZ 6 1Z

infile invent;
! Glass Tray BO049 12 6

input Item $ 1-13 IDnum $ 15-19 Padded Hangrs MNZ56 15 20
Jewelry Box rJ498 23 10

Total=instock+backord; Crystal Vase AQ67z 27 O
Picnic Basket L5030 21 0

run; Brass Clock ANS10 2 10

Program Data Yectar

N|ERROR_ tem IDhum | InStock | BackOrd Total
1] Eird Feeder - - -
B Q I SHEEER AR 20 I FSTSAS A T

&

‘ Execution Phase (6)

0 Input pointer (2)

» Notice that the input pointer now rests on column 14. With column
Input, the pointer moves as far as the INPUT statement instructs it,
and it stops in the column immediately following the last one read.

Raw Data File Invent
l---—+———-10--¥+———-Z20---+-
Bird Feeder «LGOBE 32 20
& Glaszs Mugs SBOBZ 6 12
=zlazs Tray Bo04D 12 &
Fadded Hangrs MN256 15 20
Jewelry Box 2J498 23 1
FEed Apron Aodiz2 912
Crystal Vase RAQaT2 27 0
Picnic Basket L3920 21 0
Brass Clock AN910 2 10

Program Data Yector

MN|ERROR Item IDnum | InStock | BackOrd Total
1] Bird Feeder . - .
B _BR IS SEREER AR 21 ISR SASE AT

&

‘ Execution Phase (7)

0 Input pointer (3)

» Next, the data in columns 15-19 is read and is assigned to IDnum
In the program data vector, as shown below. Likewise, the INPUT
statement reads the values for InStock from columns 21-22, and it
reads the values for BackOrd from columns 24-25. At the end of the
INPUT statement processing, the input pointer is in column 26.

Raw Data File Invent

Bird Feeder
b Glass Mug
zlass Tray
Fadded Hang
Jewelry Box
Eed Apron

Crystal Vas
Picnic Bask
Brass Clock

LG088 3 Z0«
s SBOBZ 6 1Z

BODAY 12

rs MNZ256 15 Z0

AJ498 Z3

agl7z 9 12

e AQETZ 27
et L3930 21

ANSI1OD 2 10

Program Data Yectar

MN|{ERROR

tem

IDnum | InStock

BackOrd

Total

1 0

B\ ittt Shmemnas
&

Eird Feeder

LGO&E 3

22

£0

R ST SAS S R 4mTE

‘ Execution Phase (8)

0 Input pointer (4)

» Next, the assignment statement executes. The values for InStock
and BackOrd are added to produce the values for Total.

data perm.update;
infile invent;
input Item $ 1-13 IDnum $ 15-19
InStock 21-22 BackOrd 24-25;
Total=instock+backord;

run;,
Prograrm Data Vectar
HN|ERROR ftem IDhum | InStock | BackOrd Total
1] Bird Feeder | LGOSS 3 20 23
+ —
B P) TS SREEERAS 2 PR TSESASE RS
‘o eijing ometric Association

&

‘ Execution Phase (9)

® End of the DATA step (1)

» At the end of the DATA step, three actions occur. First, the values
In the program data vector are written to the output data set as the
first observation.
data perm.update;
infile invent;
input Item $ 1-13 IDnum $ 15-19
InStock 21-22 BackOrd 24-25;
Total=instock+backord;

run;
SAS Data Set Perm.Update
Item IDnum | InStock | BackOrd | Total
Bird Feeder | LGO88 3 20 23
B Q IR SHEEERAS 24 PR RSESAS B AR

&

‘ Execution Phase (10)

0 End of the DATA step (2)

» Next, the value of N _is set to 2 and control returns to the top of the
DATA step. Finally, the variable values in the program data vector are re-set
to missing. Notice that the automatic variable ERROR _ retains its value.

data perm.update;
infile invent;

input Item $ 1-13 IDnum $ 15-19
InStock 21-22 BackOrd 24-25; Jewelry Box AJ498 23 0
Total=instock+backord;

run;,

Raw Data File Invent
V———+t————10-———+-—-——-20--——+-
Bird Feeder LEO088 3 Z0
6 Glass Mugs SBOBZ & 12
zlass Tray BoOD4D 12 &
Padded Hangrs MNZ56 15 Z0

Eed Apron ro07Z 0 12
Crystal Vase AoaTZ2 27 0
Picnic Basket L3930 21 0O
Brass Clock ANGIO 2 10

» Finally, the variable values in the program data vector are re-set to
missing. Notice that the automatic variables N _and ERROR _ retain their

values.

Frogram Data Wectar

M|ERROR

Item

IDhum | InStock | BackOrd Tatal

1 a

B\ et ShEemras

&

Setto Missing {

25 SR FTSASER R ts

‘ Execution Phase (11)

& End of the DATA step (3)

» Note: When reading variables from raw data, SAS sets the value of each
variable in the DATA step to missing at the beginning of each cycle of
execution, with these exceptions:

[variables that are named in a RETAIN statement

[variables that are created in a sum statement

[data elementsina TEMPORARY _ array

[any variables that are created with options in the FILE or INFILE statements

[automatic variables.

» In contrast, when reading variables from a SAS data set, SAS sets the
values to missing only before the first cycle of execution of the DATA step.
Thereafter, the variables retain their values until new values become
available—for example, through an assignment statement or through the
next execution of a SET or MERGE statement. Variables that are created
with options in the SET or MERGE statements also retain their values from
one cycle of execution to the next.

B 13} I SRR AR 26 ISR A IR
\&

‘ Execution Phase (12)

g Iterations of the DATA step (1)

» You can see that the DATA step works like a loop, repetitively executing

statements to read data values and create observations one by one. Each
loop (or cycle of execution) is called an iteration. At the beginning of the

second iteration, the value of N _issetto 2, and ERROR_ is still 0. Notice

that the input pointer rests in column 1 of the second record.

» run;

—> data perm.update;
infile invent;
input Item $ 1-13 IDnum $ 15-19

InStock 21-22 BackOrd 24-25;

Frogram Data Wectar

Total=instock+backord;

Raw Data File Invent

- —4————10-——F————20-——4—

Bird Feeder Lz088 2 20
6 =laszs Mugs SBOBZ a6 12
zlass Tray Bo048 12 &
Padded Hangrs MNZ56 15 20
Jewelry Box 2J498 23 O
Red Apron Ro072 0 12
Crystal WVase Roa7TZ2 27 10
Picnic Basket L3930 21 0
Brass Clock ANO1O0 Z 10

ERROR_

Item

IDAum

InStock

BackOrd

Total

2

B N dbstemssit Sasemas

ometric Association

Ba ioe
<4

1]

27

R ST SAS S R 4mTE

‘ Execution Phase (13)

0 Iterations of the DATA step (2)

» As the INPUT statement executes for the second time, the values
from the second record are held in the input buffer and then read into
the program data vector.

Raw Data File Invent

Tt 10-——F————20-——+¥
Bird Feeder LGOEE 3 20
data perm.update; 6 Glass Mugs SBOSZ 6 12
. . . zlazs Tray BoO4s 12 @
infile invent; padded Hangrs MNZ56 15 20
. _ _ Jewelry BoX AJT488 23 0O
input Item $ 1-13 IDnum $ 15-19 Red Apron nO072 B 12
InStock 21-22 BackOrd 24-25; Crystal Vase RQATZ 27 (0
) Picnic Basket L3920 21 0O
Total=instock+backord; Brass Clock AN910 2 10
run;,
Frogram Data Vector
H|ERROR_ Itemn IDnum | InStock | BackOrd Total
2 1] & Glass Mugs | SE0SZ2 & 12
B\ it Shmemnas 28 WaRARSESASAR RS

=in

‘ Execution Phase (14)

0 Iterations of the DATA step (3)

» Next, the value for Total is calculated based on the current values
for InStock and BackOrd. The RUN statement indicates the end of

the DATA step.

data perm.update;
infile invent;
input Item $ 1-13 IDnum $ 15-19

InStock 21-22 BackOrd 24-25;

Total=instock+backord;

run,

FProgram Data Vectar

HN|ERROR_ item IDnum | InStock | BackOrd Total
2 1] f Glazs Mugs | SE0S2 A 12 18
+ =
B }3} IS SEREER A Z
~ Jing Birometric Association

&

Raw Data File lmvent

Bird Feeder LE0aE 3 Z0
6 lass Mugs SBOBZ £ 1lZe
=lasz Tray Boddd 12 &
Padded Hangrs MN=256 13 20
Jewelry Box 27498 23 O
FEed Apron ootz 9 12
Crystal Vase AQATZ 27 0
Picnic Basket L8930 21 O

Brass Clock ANS10 2 10

R ST SAS S R 4mTE

‘ Execution Phase (15)

. Iterations of the DATA step (4)

» At the bottom of the DATA step, the values in the program data
vector are written to the data set as the second observation.

B-B}
&

Faw Data File [nvent

I-——A————10--—+-———20-——+¥

Bird Feeder
B Glass Mugs

zlass Tray

Fadded Hangrs
Jewelry Box

FEed Apron

Crystal Vase
Picnic Basket
Brass Clock

LGOAS
SE082
BOO49
MNZ56
AT499
AQ072
RORTZ
L5930
AN9 10

3 Z0
b 12
12 6
15 20
23 0
5 12
27 0
21 0
2 10

SR e e

FProgram Data Vectar

ERROR. ltem

IDhum

InStock

BackOrd

Total

a

0 6 Glass HMugs

SBEOGE

f 12

13

SAS Data Set Perm.Update

Item

IDnhum

InStock

BackOrd

Total

Bird Feeder

LGO88

3

20

23

6 Glass Mugs

SB082

6

12

18

30

R ST SAS S R 4mTE

‘ Execution Phase (16)

0 Iterations of the DATA step (5)

» Next, control returns to the top of the DATA step, and the values
for Item, IDnum, InStock, BackOrd, and Total are re-set to missing.

Faw Data File Invent

Bird Feeder LE0AE 2 20
& Zlass Mugs SBOBZ 6 12
zlass Tray Bo04y 12 &
Fadded Hangrs MN256 15 20
Jewslry Box AT408 23 O
Eed Apron AOOTZ 9 12
Crystal Vase RAQATZ 27 1
Picnic Basket L3530 21 0
Brass Clock ANSI1O0 2 10

Frogram Data Yector

HMN|ERROR_ Item IDnum | InStock | BackOrd

CeE S e

I Fesetto Missing

EERAS 31

R ST SAS S R 4mTE

‘ Execution Phase (17)

' End-of-file marker

» The execution phase continues in this manner until the end-of-file marker
IS reached in the raw data file. When there are no more records in the raw
data file to be read, the data portion of the new data set is complete.

» Remember, the order in which variables are defined in the DATA step
determines the order in which the variables are stored in the data set. The
DATA step below, which reverses the order of Item and IDnum, produces a
different data set from the same raw data.
data perm.update;
infile invent;
input IDnum $ 15-19 Item $ 1-13
InStock 21-22 BackOrd 24-25;
Total=instock+backord;

run;
SAS Data Set Perm.Update

IDnum Item InStock | BackOrd | Total
LG088 Bird Feeder 3 20 23
SB082 6 Glass Mugs 6 12 18
B N dbstemssit Sasemas 2 s RSESAS R

=in

jing Biometric Association

‘ Execution Phase (18)

§ Summary of the execution phase (1)

» You've seen how the DATA step iteratively reads records in the raw data
file. Now take a minute to review execution-phase processing.

» During the execution phase

[variables in the program data vector are initialized to missing before each
execution of the DATA step

[each statement is executed sequentially

[the INPUT statement reads the next record from the external file identified by
the INFILE statement, and it writes the values into the program data vector

[other statements can then further modify the current observation

[the values in the program data vector are written to the SAS data set at the end
of the DATA step

[program flow is returned to the top of the DATA step

[the DATA step is executed until the end-of-file marker is reached in the
external file.

B P} I SRR AR = ISR A IR
\&

‘ Execution Phase (19)

o Summary of the execution phase (2)

Cormpile
Prograrm

Cormpilation Phase

L

Initialize Variables
to Mis=ing

L

Exzecute INPUT
Statenent

Execute Cther
Staterments

L)

Cutput to
SAS Data Set

By fiemsit spemmnes
\&

Execution Phase

es

Mo

34

Mest

Step

R ST SAS S R 4mTE

‘ Execution Phase (20)

0 End of the execution phase

» At the end of the execution phase, the SAS log confirms that the
raw data file was read, and it displays the number of observations
and variables in the data set.

SAS Log

NOTE: 9 records were read from the infile INVENT.
NOTE: The data set PERM.UFDATE has 9 observations
and 5 wvariables.

B @ I SRR AR 3 ISR A IR
\&

' Execution Phase (21)

0 Unless otherwise directed, the DATA step executes

» a. once for each compilation phase.

» p. once for each DATA step statement.
» C. once for each record in the input file.
» d. once for each variable in the input file.

» Correct answer: C

[The DATA step executes once for each record in the input file, unless
otherwise directed.

Bp)\ dSemsiit SuiR e s 3% RS SAS S

' Execution Phase (22)

§ Which of the following actions occurs at the end of the DATA step?

» a. The automatic variables N and ERROR_ are incremented by one.
» pb. The DATA step stops execution.
» C. The descriptor portion of the data set is written.

» d. The values of variables created in programming statements are re-set
to missing in the program data vector.

» Correct answer: d

[By default, at the end of the DATA step, the values in the program data vector
are written to the data set as an observation, the value of the automatic
variable N_is incremented by one, control returns to the top of the DATA step,
and the values of variables created in programming statements are set to
missing. The automatic variable ERROR _ retains its value.

<«

B P} I SRR AR a7 ISR A IR
\&

' Debugging a DATA Step (1)

9 Diagnosing errors in the compilation phase (1)

» Now that you know how a DATA step is processed, you can use
that knowledge to correct errors. Many errors are detected during the
compilation phase, including

[misspelled keywords and data set names

[missing semicolons

[unbalanced quotation marks

[invalid options.

ccccccccccccccccc

) AT SR A 3 RS SAS S

‘ Debugging a DATA Step (2)

9 Diagnosing errors in the compilation phase (2)

» During the compilation phase, SAS can interpret some syntax
errors (such as the keyword DATA misspelled as DAAT). If it cannot
Interpret the error, SAS
[prints the word ERROR followed by an error message in the log
[compiles but does not execute the step where the error occurred, and
prints the following message to warn you:
O NOTE: The SAS System stopped processing this step because of errors.

» Some errors are explained fully by the message that SAS prints;
other error messages are not as easy to interpret. For example,
because SAS statements are in free format, when you fail to end a
SAS statement with a semicolon, SAS does not always detect the
error at the point where it occurs.

B 13} I SKEEERAS & PR BSESAS B
\&

‘ Debugging a DATA Step (3)

9 Diagnosing errors in the execution phase (1)

» AS you have seen, errors can occur in the compilation phase,
resulting in a DATA step that is compiled but not executed. Errors
can also occur during the execution phase. When SAS detects an
error in the execution phase, the following can occur, depending on
the type of error:

[A note, warning, or error message is displayed in the log.

[The values that are stored in the program data vector are displayed in
the log.

[The processing of the step either continues or stops.

Bp)\ dSemsiit SuiR e s % RS SAS S

' Debugging a DATA Step (4)

9 Diagnosing errors in the execution phase (2)

» Example: Suppose you misspelled the fileref in the INFILE
statement below. This is not a syntax error, because SAS does not
validate the file that you reference until the execution phase. During
the compilation phase, the fileref Invnt is assumed to reference

some external raw data file.
data perm.update;
infile invnt;
input Item $ 1-13 IDnum $ 15-19
InStock 21-22 BackOrd 24-25;
Total=instock+backord;
run;

) AT SR A # RS SAS S

ccccccccccccccccc

‘ Debugging a DATA Step (5)

0 Diagnosing errors in the execution phase (3)

» This error is not detected until the execution phase begins. Because there
IS no external file that is referenced by the fileref Invnt, the DATA step stops

processing. <A Log
07 data perm.update;
0g infile inwvnt;
oo input Item $ 1-13 IDnum 5 15-19%
10 Instock 21-22 Backord Z4-25;
11 Total=instock+backord;
12 run;

ERROR: Ho logical assign for filename INVNT.
NOTE: The $AS Svstem stopped processing this step
because of errors.
WARNING: The data set PERM.UFDATE mayv be incomplete.
When this step was stopped there were
0 observations and 5 variables.

» Because Invent is misspelled, the statement in the DATA step that
identifies the raw data is incorrect. Note, however, that the correct number of
variables was defined in the descriptor portion of the data set.

Bp)\ st Suemmnas 4 IEBR S SASE R

ey

‘ Debugging a DATA Step (6)

¥ Diagnosing errors in the execution phase (4)

» Incorrectly identifying a variable's type is another common
execution-time error. As you know, the values for IDnum are
character values. Suppose you forget to place the dollar sign ($) after
the variable's name in your INPUT statement. This is not a compile-
time error, because SAS cannot verify IDnum's type until the data

values for IDnum are read.
data perm.update;
infile invnt;
input Item $ 1-13 IDnum $ 15-19
InStock 21-22 BackOrd 24-25;
Total=instock+backord;

run,

B\ it Shmemnas °
&

Raw Data File Invent

-—t————10-——t+———-20--—+-
Bird Feeder LEO088 32 20
6 Glass Mugs SJBOBZ 6 12
zlazz Tray BoOdd 12 @
Fadded Hangrs MHWZ56 15 20
Jewelry BoX AJ498 23 0
FEed Apron aolie 90 12
Crystal Vase RQETZ 27 [
Picnic Basket L8230 21 0O
Brazz Clock ANDI1O0 2 10
I R 5TSAS T R RIS

‘ Debugging a DATA Step (7)

0 Diagnosing errors in the execution phase (5)

» In this case, the DATA step completes the execution phase, and the
observations are written to the data set. However, several notes appear in the

log.

» Each note identifies the location of the invalid data for each observation. In
this example, the invalid data is located in columns 15-19 for all observations.

B\glﬁz

B/
<4

SAS Log
NOTE: Invalid data for IDnum in line 7 15-19.
RULE: ————4-—---l---—F-oo-Bo Bl

07 Crystal Vase RoaiZ 27 0

Ttem=Crystal Vase IDnum=. InS3tock=27 Backord=0
Total=27 ERROR =1 N =7

NOTE: Invalid data for IDhum in line 8 15-19.
08 Picnic Basket L8930 21 0

Item=Picnic Basket IDnum=. InStock=21 Backord=0
Total=21 ERROR =1 N =8

NOTE: Invalid data for IDhum in line 9 15-19.
0o Brasz Clock ANS10 2 10

Ttem=Brass Clock IDnum=. InStock=Z Backord=10
Total=12z ERROR =1 N =3

NOTE: 9 records were read from the infile INVENT.
NOTE: The data set PERM.UPDATE has 9 observations
and 5 wvariables.

i el bl .

R ST SAS S R 4mTE

‘ Debugging a DATA Step (8)

0 Diagnosing errors in the execution phase (6)

» The second line in each note (excluding the RULE line) displays
the raw data record. Notice that the second field displays the values
for IDnum, which are obviously character values.

» The third and fourth lines display the values that are stored in the
program data vector. Here, the values for IDnum are missing,
although the other values have been correctly assigned to their
respective variables. Notice that ERROR_ has a value of 1,
Indicating that an error has occurred.

B\ it Shmemnas o ISR SEAST BT

‘ Debugging a DATA Step (9)

0 Diagnosing errors in the execution phase (7)

» \When you read raw data with the DATA step, it's important to check the SAS log to
verify that your data was read correctly. Here is a typical message:

SAS Log

WARNING: The data set PERM.UPDATE may be incomplete.
When this step was stopped there were
0 observations and 5 wariables.

» \When no observations are written to the data set, you should check to see whether
your DATA step was completely executed. Most likely, a syntax error or another error
is being detected at the beginning of the execution phase.

SAS Log

NOTE: Invalid data for IDnum in line 7 15-19.

» An invalid data message indicates that the program executed, but the data is not
acceptable. Typically, the message indicates that a variable's type has been

incorrectly identified in the INPUT statement, or that the raw data file contains some
invalid data value(s). .

Bp)\ dSemsiit SuiR e s % RS SAS S
BA e

' Testing Your Programs (1)

0 Writing a NULL data set

» After you write or edit a DATA step, you can compile and execute your
program without creating observations. This enables you to detect the most
common errors and saves you development time. A simple way to test a
DATA step is to specify the keyword NULL __as the data set name in the
DATA statement.

data null ;
infile invent;
input Item $ 1-13 IDnum $ 15-19
InStock 21-22 BackOrd 24-25;
Total=instock+backord;
run;

» \When you submit the DATA step, no data set is created, but any
compilation or execution errors are written to the log. After correcting any
errors, you can replace _NULL_ with the name of the data set you want to
create.

B PR I SRR AR a7 ISR A IR
\&

‘ Testing Your Programs (2)

0 Limiting observations

» Remember that you can use the OB S= option in the INFILE

statement to limit the number of observations that are read or created
during the execution of the DATA step.

data perm.update;
infile invent obs=10;
input Item $ 1-13 IDnum $ 15-19

InStock 21-22 BackOrd 24-25;
Total=instock+backord;

run,

» \When processed, this DATA step creates the Perm.Update data
set with variables but with only ten observations.

B\ dosecimsit SHimsmRas 4 AR SESAS R
\&

' Testing Your Programs (3)

. PUT statement (1)

» \When the source of program errors is not apparent, you can use
the PUT statement to examine variable values and to print your own
message in the log. For diagnostic purposes, you can use IF-
THEN/ELSE statements to conditionally check for values.

data work. test;
infile loan;
input Code $ 1 Amount 3-10 Rate 12-16
Account $ 18-25 Months 27-28;
if code='l' then type='variable';
else if code='2' then type='fixed';
else put 'MY NOTE: invalid value: ' code=;
run;
B\ dosecimsit SHimsmRas “ PR SESAS B R 2
\&

‘ Testing Your Programs (4)

' PUT statement (2)

» In this example, if CODE does not have the expected values of 1 or 2, the
PUT statement writes a message to the log:
SAS Log

MY NOTE: invalid value: Code=Y¥
NOTE: The data set WORK.TEST has 9 cbservations
and & variables.

» General form, simple PUT statement:
PUT specification(s);
where specification specifies what is written, how it is written, and where it

Is written. This can include

[a character string

[one or more data set variables

[the automatic variables N_and ERROR_

[the automatic variable ALL_

» and much more. The following pages show examples of PUT
specifications.

B @ I SRR AR 50 ISR A IR
\&

‘ Testing Your Programs (5)

0 Character strings

» You can use a PUT statement to specify a character string to
iIdentify your message in the log. The character string must be
enclosed in quotation marks.

put 'MY NOTE: The condition was met.';

SAS Log

MY NOTE: The condition was met.
NOTE: The data set WORK.TEST has 9 cobservations
and 6 variables.

B 13} I SRR AR 5 ISR A IR
\&

‘ Testing Your Programs (6)

' Data set variables

» You can use a PUT statement to specify one or more data set

variables to be examined for that iteration of the DATA step:

put 'MY NOTE: invalid value: ' code type;
=AS Log

MY NOTE: invalid walue: ¥ FIXED
NOTE: The data set WORKE.TEST has 9 obhservations
and & wvarilables.

» Note that when you specify a variable in the PUT statement, only
Its value Is written to the log. To write both the variable name and its
value in the log, add an equal sign (=) to the variable name.

put 'MY NOTE: invalid value: ' code= type=;

SAS Log

MY NOTE: invalid value: Code=¥ type=FIXED
NOTE: The data set WORK.TEST has 9 cbservations
and 6 variables.

By) dEsecsii SEiEmmEas 5 B SSAS B
&

‘ Testing Your Programs (7)

‘ Automatic variables

» You can use a PUT statement to display the values of the
automatic variables N _and ERROR_. In some cases, knowing
the value of _N_ can help you locate an observation in the data set:
put 'MY NOTE: invalid value: '
code= n = error =;

SAS Log

MY NOTE: invalid value: Code=Y N=4 ERROR=0
NOTE: The data set WORK.TEST hazs 9 observations
and 6 variables.

» You can also use a PUT statement to write all variable names and
variable values, including automatic variables, to the log. Use the

ALL specification: SAS Log
put 'MY NOTE: invalid wvalue: MY NOTE: invalid value: Account=101-3144
Amount=53,500 Rate=10.50% Months=1
' all ; Code=¥ type=C ERROR=0 N=4

NOTE: The data set WORK.TEST has 9 observations
and & wvariables.

B }3} G SHEEER A 53 IS BRATSESAS A RATE
\&

' Testing Your Programs (8)

9 Conditional processing

» You can use a PUT statement with conditional processing (that is,
with IF-THEN/ELSE statements) to flag program errors or data that is
out of range. In the example below, the PUT statement is used to
flag any missing or zero values for the variable Rate.
data finance.newcalc;

infile newloans;

input LoanID $ 1-4 Rate 5-8 Amount 9-19;

if rate>0 then Interest=amount* (rate/12) ;

else put 'DATA ERROR ' rate= n =;

run,

» The PUT statement can accomplish a wide variety of tasks. This
lesson shows a few ways to use the PUT statement to help you
debug a program or examine variable values. -

Bp)\ dSemsiit SuiR e s 54 RS SAS S
Bp dtsEmit SsEEERas

